Concerning the convergence of Newton-like methods under weak Hölder continuity conditions
نویسندگان
چکیده
منابع مشابه
Convergence of Newton { like
We present a (semilocal) Kantorovich{type analysis for Newton{like methods for singular operator equations using outer inverses. We establish sharp generalizations of the Kantorovich theory and the Mysovskii theory for operator equations when the derivative is not necessarily invertible. The results reduce in the case of an invertible derivative to well{known theorems of Kantorovich and Mysovsk...
متن کاملHölder continuity of solution maps to a parametric weak vector equilibrium problem
In this paper, by using a new concept of strong convexity, we obtain sufficient conditions for Holder continuity of the solution mapping for a parametric weak vector equilibrium problem in the case where the solution mapping is a general set-valued one. Without strong monotonicity assumptions, the Holder continuity for solution maps to parametric weak vector optimization problems is discussed.
متن کاملA Hölder continuity result for a class of obstacle problems under non stan - dard growth conditions
A Hölder continuity result for a class of obstacle problems under non standard growth conditions Michela Eleuteri and Jens Habermann Michela Eleuteri, Dipartimento di Matematica di Trento via Sommarive 14, 38100 Povo (Trento) Italy; e-mail: [email protected] Jens Habermann, Department of mathematics, Friedrich-Alexander University, Bismarckstr. 1 1/2, 91054 Erlangen, Germany; e-mail: ha...
متن کاملSemilocal Convergence Theorem for the Inverse-Free Jarratt Method under New Hölder Conditions
Under the new Hölder conditions, we consider the convergence analysis of the inverse-free Jarratt method in Banach space which is used to solve the nonlinear operator equation. We establish a new semilocal convergence theorem for the inverse-free Jarratt method and present an error estimate. Finally, three examples are provided to show the application of the theorem.
متن کاملLocal convergence analysis of inexact Newton-like methods under majorant condition
We provide a local convergence analysis of inexact Newton–like methods in a Banach space setting under flexible majorant conditions. By introducing center–Lipschitz–type condition, we provide (under the same computational cost) a convergence analysis with the following advantages over earlier work [9]: finer error bounds on the distances involved, and a larger radius of convergence. Special cas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Functiones et Approximatio Commentarii Mathematici
سال: 2003
ISSN: 0208-6573
DOI: 10.7169/facm/1538186639